姜荣-pg游戏试玩

当前位置:   教师名录
姜荣
jiang rong
发布日期:2023-12-14 08:38:30   发布人:数理与统计学院

基本信息

 

姓名:姜荣

职称:教授

办公室:15号楼507

邮箱:jiangrong@sspu.edu.cn


 

个人简介:

姜荣,理学博士,教授。现为上海第二工业大学数理与统计学院教师。研究方向为:大数据建模,分位数回归和单指标模型等。在j  bus econ statj financ econometneurocomputingtestj multivariate  anal等国际期刊上发表scissci论文30余篇。主持国家自然科学基金青年基金、国家自然科学基金天元基金、教育部人文社科基金和上海市扬帆计划。

 

 

教育背景: 

200909月至201404月,同济大学数学科学学院,应用数学专业,获博士学位,研究方向:统计学

200509月至200907月,同济大学数学科学学院,统计学专业,获学士学位 

 

 

工作经历:

202301月至今:上海第二工业大学数理与统计学院,教授

201809月至202212月:东华大学理学院,副教授

201404月至201808月:东华大学理学院,讲师

201712月至201812月:brunel university london(英国),访问学者

 

 

研究方向:

大数据分析,分位数回归和单指标模型

 

 

主讲课程:

《高等工程数学》、《应用统计》、《属性数据分析》、《非参数统计》、《概率论与数理统计》

 

 

主持项目: 

202209月—202512月:教育部人文社会科学研究青年基金项目“高维流数据下线性分位数回归模型的理论研究及应用”(no.22yjc910005),8万元,在研

201901月—202112月:国家自然科学基金青年基金项目“大数据下单指标模型的统计推断研究”(no.11801069),20万元,结题

201705月—202004月:上海市扬帆计划“超高维数据单指标模型的变量选择问题研究”(no.17yf1400800),20万元,结题  

201701月—201712月:国家自然科学基金天元基金项目“单指标模型估计方法的研究”(no.11626057),3万元,结题

 

 

学术论文:

[1] jiang r, yu k. (2023). rong jiang and keming yu's discussion of “estimating means of bounded random variables by betting” by ian waudby-smith and aaditya ramdas, journal of the royal statistical society series b: statistical methodology. qkad119, (sci, 一区,顶刊)

[2] jiang r, yu k. (2023). unconditional quantile regression for streaming data sets. journal of business & economic statistics. https://doi.org/10.1080/ 07350015.2003.2293162. (sci, ssci二区)

[3] jiang r, yu k. (2023). no-crossing single-index quantile regression curve estimation. journal of business & economic statistics. 41: 309-320. (sci, ssci二区)

[4] jiang r, choy s, yu k. (2023). non-crossing quantile double-autoregression for the analysis of streaming time series data. journal of time series analysis. doi: 10.1111/jtsa.12725. (sci).

[5] jiang r, chen s, wang f. (2023). quantile regression for massive data set. communications in statistics-simulation and computation. https://doi.org/ 10.1080/03610918.2023.2202840. (sci)

[6] jiang r, peng y. (2023). a short note on fitting a single-index model with massive data. statistical theory and related fields. 7: 49-60. (esci)

[7] jiang r, hu x, yu k. (2022). single-index expectile models for estimating conditional value at risk and expected shortfall.  journal of financial econometrics.  20: 345-366. (ssci三区)

[8] jiang r, yu k (2022). renewable quantile regression for streaming data sets. neurocomputing. 508: 208-224. (sci二区top)

[9] jiang r, sun m. (2022).  single-index composite quantile regression for ultra-high-dimensional data. test. 31: 443-460. (sci二区)

[10] jiang r, guo m, liu x. (2022). composite quasi-likelihood for single-index models with massive datasets. communications in statistics-simulation and computation. 51: 5024-5040. (sci)

[11] jiang r, yu k. (2021). smoothing quantile regression for a distributed system. neurocomputing. 466: 311-326. (sci二区top)

[12] jiang r, chen w, liu x. (2021). adaptive quantile regressions for massive datasets. statistical papers, 62:1981-1995. (sci, 二区)

[13] jiang r, peng y, deng y. (2021). variable selection and debiased estimation for single-index expectile model. australian & new zealand journal of statistics63:658-673. (sci)

[14] jiang r, yu k. (2020). single-index composite quantile regression for massive data. journal of multivariate analysis, 180: 104669. (sci)

[15] jiang r, hu x, yu k and qian w. (2018). composite quantile regression for massive datasets, statistics, 52: 980-1004. (sci)

[16] jiang r, qian w, and zhou z. (2018). weighted composite quantile regression for partially linear varying coefficient models. communications in statistics—theory and methods, 47: 3987-4005. (sci)

[17] jiang r, qian w, zhou z.(2016). weighted composite quantile regression for single-index models, journal of multivariate analysis, 148: 34-48. (sci)

[18] jiang r, qian w, zhou z.(2016). single-index composite quantile regression with heteroscedasticity and general error distributions, statistical papers, 57: 185-203. (sci, 二区)

[19] jiang r, qian w.(2016). quantile regression for single-index-coefficient, statistics and probability letters, 110: 305-317. (sci)

[20] jiang r.(2015). composite quantile regression for linear errors-in-variables models, hacettepe journal of mathematics and statistics, 44: 707-713. (sci)

[21] jiang r, zhou z, qian w.(2015). generalized analysis-of-variance-type test for the single-index quantile model, communications in statistics—theory and methods, 44: 2842-2861. (sci)

[22] jiang r, qian w, zhou z.(2014). test for single-index composite quantile regressionhacettepe journal of mathematics and statistics, 43: 861-871. (sci)

[23] jiang r, qian w, li j.(2014). testing in linear composite quantile regression models, computational statistics, 29: 1381-1402. (sci)

[24] jiang r, zhou z, qian w. and chen y.(2013). two step composite quantile regression for single-index models. computational statistics & data analysis, 64, 180-191. (sci, 二区)

[25] jiang r, qian w, zhou z.(2012). variable selection and coefficient estimation via composite quantile regression with randomly censored data, statistics and probability letters, 82: 308-317. (sci)

[26] jiang r, zhou z, qian w, shao w.(2012). single-index composite quantile regression, journal of the korean statistical society, 41: 323-332. (sci)

[27] jiang r, yang x, qian w.(2012). random weighting m-estimation for linear errors-in-variables models, journal of the korean statistical society, 41: 505-514. (sci)

分享到:
相关信息
网站地图